Geological-logo
Geological-logo

Atlas of volcanoes and volcanic rocks

Geopetal structure in the interstice between pillow lavas. Base is filled with hyaloclastite fragments, the top with calcite spar. The contact between these two fills represents a horizontal surface at the time of deposition
Geopetal structure in the interstice between pillow lavas. Base is filled with hyaloclastite fragments, the top with calcite spar. The contact between these two fills represents a horizontal surface at the time of deposition

Volcanoes and the products of volcanism

Volcanoes shape our earth: landscapes, the air we breathe, the oceans.  From day one they have had a direct influence and impact on life itself.  They still occupy a central place in our daily lives. Recent events in Hawaii (fissure eruptions, May-June 2018) and the explosive eruption of Fuego with its destructive pyroclastic flows (Guatemala, June 2018), have killed local inhabitants and destroyed property. Social media makes sure that we are kept up to date with these events; the fourth estate makes sure we are regaled with the death and mayhem.

I have never seen an actual eruption; the inquisitive, scientific part of me would love to witness one (at a safe distance). On my doorstep are three extinct stratovolcanoes 2-3 million years old. An hour and a half drive south puts me smack in the middle of the Taupo Volcanic Zone that, historically and prehistorically is prone to cataclysmic, explosive fits. The same travel time north and I’m in the Auckland volcanic field, the most recent eruption there being about 600 years ago. I have seen the products of volcanism – the quiet effusive types, explosive and cataclysmic events; some as old as 2 billion years, others much more recent.

The collection of images here is a sample of these events. Some I have published, others just visited. I include this category in the Atlas because volcanoes and eruption products have a significant impact on sedimentary basins, and provide large volumes of sediment that ultimately are distributed throughout terrestrial drainage systems and marine environments; volcanoes contribute to sediments and sedimentary environments.

Here are some other posts on volcanoes, volcanics and volcaniclastics that have additional images

Volcanics in outcrop: Lava flows

Volcanics in outcrop: Secondary volcaniclastics

Volcanics in outcrop: Pyroclastic fall deposits

Volcanics in outcrop: Pyroclastic density currents

Ignimbrites in outcrop and thin section

Block and ash flows

Accretionary aggregates and accretionary lapilli

Class 5; The Toba eruption – how a super volcano almost stopped humanity in its tracks

Airfall pyroclastics drape antecedent topography

Garibaldi Volcanic Field, British Columbia

The Garibaldi and Garibaldi Lake volcanic fields contain some of the youngest eruption products in Canada; most of the activity is about mid-Pleistocene through Holocene.  Most common are calc-alkaline andesites and dacites, with some basaltic rocks, associated with subduction of the Juan de Fuca Plate. They are located 60-70 km north of Vancouver. Mt. Garibaldi is a stratovolcano, with foundations as old as 1.3 Ma; Black Tusk also has old volcanic foundations, but its present form is due to much younger activity.  Late Pleistocene activity took place beneath the western segment of the Laurentide-Cordilleran Ice Sheet.

Herein are a few images of Garibaldi, Tusk, and Garibaldi Lake (the latter is a really nice hike).  Images of lava flows are from exposures along Highway 99 between Squamish and Pemberton.

About 15 km north of Squamish on Highway 99; this jointed lava flow has over-ridden dacitic agglomerate. The flow base is lined with abundant vesicles, most of which have been stretched approximately parallel to the basal flow contact.  The flow base is highly irregular, possibly following sub-glacial erosional topography. Three images follow.

Same location as above. The basal agglomerate here appears to be part of the original flow unit, where the lower cooled lava has been fragmented by the moving flow. Some fragments have been reincorporated into the base of the solid flow. Three images below.

Precambrian volcanics

This set of images is from the Proterozoic Flaherty Formation, Belcher Islands. A small number of Rb/Sr and Pb-Pb ages indicate between 2.0-1.9 billion years. The Flaherty succession consists of interleaved tholeiitic to subalkaline basalt flows, pillowed lavas, pyroclastic and/or density current ash flows, and interflow turbidites, that accumulated mostly in a marine environment, although edifices may have extended above sea level. Metamorphism is prehnite-pumpellyite grade, and preservation of primary volcanic and volcaniclastic structures is excellent.  The volcanics were extruded on Proterozoic continental crust. However it is still uncertain whether they represent some kind of mantle plume, formed during extension associated with crustal flexure, or are a hybrid of continental arcs.

A recent lava tube breakout on Kamokuna lava delta, November 2017, Hawaii. This example is on land, but serves as a useful analogy to the submarine lava tube in the image immediately above.
A recent lava tube breakout on Kamokuna lava delta, November 2017, Hawaii. This example is on land, but serves as a useful analogy to the submarine lava tube in the image immediately above.

Canadian Arctic

New Zealand

Karioi volcano, Raglan

Auckland volcanic field

Auckland volcanic field contains about 50 known eruptive centres; scoria cones, lava flows,  and craters formed by highly explosive, phreatomagmatic eruptions, concentrated in an area of metropolitan Auckland, about 360 sq km. Activity began about 250,000 years ago; the youngest is Rangitoto which erupted 600 years ago, and was witnessed by Auckland Mãori.

Explosion craters and maar deposits

Orakei Basin, an explosion crater more than 83,000 years, is tidal
Orakei Basin, an explosion crater more than 83,000 years, is tidal

Maungataketake maar volcano (exposed along the shore of Manukau Harbour, just west of Auckland International Airport. The shore platform contains remnants of a Kauri forest that was flattened during the explosive blasts. Possibly as old as 177,000 years B.P.

Paku Rhyolite dome, Coromandel Volcanic Zone

Paku rhyolite dome guards the entrance to Tairua Harbour and estuary, east Coromandel Peninsula, New Zealand. The Paku eruptive center was part of widespread rhyolitic and dacitic volcanism from Late Miocene to Early Pleistocene in the Coromandel Volcanic Zone. They are part of the Minden Rhyolite Group. Paku is about 7-8 million years old (Pliocene). The Paku hypersthene-hornblende-biotite rhyolites here are beautifully flow banded and spherulitic,

Taranaki

Mt Taranaki (Egmont), is an andesitic stratovolcano that began erupting 130,000 years ago. It is  regarded as active. The edifice is surrounded by a spectacular ring plain, dotted with lahar mounds (upper right), testament to the destructive nature of volcanoes even when not erupting. The lahars were generated on the volcano flanks during large landslides, including possible sector collapse; loose rock, mud and water form fluid, fast-moving flows. They can travel many kilometres from their source.  Conical lahar mounds commonly form around very large rafts of rock (sometimes many metres across), once the flow has come to rest. 

Waitakeri Arc, Lower Miocene, west Auckland

West of Auckland city, Waitakere hills are underlain by Early Miocene andesitic and basaltic flows, pillows, and debris flows, derived from volcanic centres off the west coast of New Zealand. Marine fossils are commonly caught up in the lahars and debris flows many with boulders up to 1.5m wide.

Leave a Comment

Your email address will not be published. Required fields are marked *

Archives
Categories
dip and strike compass
Measuring dip and strike
sandstone classification header
Classification of sandstones
Calcite cemented subarkose, Proterozoic Altyn Fm. southern Alberta
Sandstones in thin section
poles to bedding great circles
Stereographic projection – poles to planes
froude-reynolds-antidunes-header-768x439-1
Fluid flow: Froude and Reynolds numbers
Stokes Law for particle settling in a schematic context of other fluid flow functions
Fluid flow: Stokes Law and particle settling
sedimentary-basins-distribution-1-768x711
Classification of sedimentary basins
Model are representational descriptions are written in different languages - diagrammatic, descriptive, mathematical, and conceptual. They commonly contain variables and dimensionless quantities that permit quantitative analysis of the physical systems the models represent.
Geological models
Recent Posts
Cam Potikohua lst thin section
Atlas of cool-water carbonate petrology
mary lyell portrait
Mary Lyell (1808-1873)
A classic topographic expression of resistant regressive sandstone cycles, each culminating in a maximum flooding surface in parasequences from the Jurassic Bowser Basin, northern British Columbia. The MFS in the foreground occurs just above the prominent bench where it is overlain by coarsening upward shale-sandstone of the succeeding regression. At least four such packages are present in this view (arrows indicate approximate MFS positions). Maximum regressive surfaces are also present below the MFS, as shown in the previous image. In each cycle, the transgressive package accounts for 10% or less of the total cycle thickness.
Atlas of sequence stratigraphy
Strand Fi glacier retreat-moraine
Glaciofluvial - periglacial deposits
Inge Lehman 1932
Inge Lehmann (1888 –1993)
nasa mackenzie_oli_2017200
Atlas of delta deposits
FD Strand Fi 83
Atlas of fan deltas
digitate Mavor stylolites
Stromatolites and microbial laminates
biped tracks
Atlas of trace fossils
Alta Dev-Miss east of Lewis Th
Atlas of Syntectonic sediments
Scroll to Top