Geological-logo
Geological-logo

Atlas of Unconformities

The Atlas, as are all blogs, is a publication. If you use the images, please acknowledge their source (it is the polite, and professional thing to do).

Stratigraphy is a cornerstone (sic) of the earth sciences. With it, we unravel earth’s history, the sequence of events and processes that have given us the world we live in. It is the story, written in rocks and fluids, of the physical, chemical, and biological world.  Perhaps we should now include the social and psychological spheres of our existence, as part of the latest geological period, the Anthropocene – layer upon layer of human thought, actions, consequences.

Unconformities are a fundamental part of Stratigraphy.  They are that part of the rock record in which time and rock are missing – periods of time in which rocks either did not form, or if they did form were subsequently removed. In both cases, the “missing” information tells us that something happened; the ‘something’ may have been local, confined to our own backyard, or of global extent such as extinction events, the construction of mountains or destruction of oceans. So, geologists who find unconformities don’t throw up their hands in despair; they rub their hands in glee at the promise of so many possible explanations.

What better example to begin with than one of James Hutton’s classic localities on Arran, west Scotland (image above).  This is the unconformity at Lochranza where Carboniferous sandstone overlies Late Precambrian Dalradian schist.  The unconformity here represents about 240 million years of time, seemingly missing, and yet it also represents a period of mountain building, where deeply buried metamorphic rocks were uplifted many kilometres, exposed and worn down by the vagaries of ancient weather systems, and buried by sand shed from the rising mountains.  This tale of the evolving earth is encapsulated in the seemingly innocuous contact between the two different groups of rock.

Lochranza, Scotland

Proterozoic Gowganda Formation

The unconformity between Archean metavolcanic and plutonic rocks at Cobalt, Ontario, and the Proterozoic Gowganda Formation, is marked by a regolith of blocky granodiorite and granite, that is overlain by diamictites deposited during Early Proterozoic glaciation. Two images follow.

Old Red Sandstone (ORS) on Moine schists, Portskerra, Scotland

The ORS is a mixed bag of sedimentary rocks, mostly Devonian, but extending into the late Silurian and early Carboniferous. Their importance lies in the direct association with Caledonide tectonics, where sediment was shed from Moine rocks exposed during tectonic uplift into adjacent foreland basins. The ORS is sometimes compared with the younger Molasse foredeep successions of Europe. The unconformity at Portskerra is an erosional surface, where the ORS filled paleotopographic lows and draped the intervening highs.

Locations 1 to 4 in the image above refer to the images that follow.

1 Thin, crossbedded bedded sandstone onlap Moine schist, possibly deposited as attached channel sand bars. Local relief on the unconformity is about 2 m.

A basal breccia-conglomerate occurs in local paleotopographic lows on the unconformity

Loch Assynt, northwest Scotland

Lewisian gneisses and migmatites (Archean) are overlain unconformably by Torridonian sandstone (Proterozoic).  The roadcut adjacent Loch Assynt is west of the Moine Thrust complex; both rock assemblages are part of the ancient Laurentian continental block.  The three images below are from the same general location.  At this locality there is subdued paleotopographic relief on the unconformity.

Expedition Formation, Canadian Arctic

The Campanian to Middle Eocene Eureka Sound Group on Ellesmere and Axel Heiberg Islands represents the last gasp of sedimentation in a thermally subsiding Sverdrup Basin. In the central part of the basin, The Expedition Formation contains two third-order stratigraphic sequences separated by a disconformity where most of the Maastrichtian is missing. Along the basin margins Sequence 1 is commonly missing such that Sequence 2 onlaps Paleozoic bedrock.

Buchanan Lake Formation, Canadian Arctic

This is the youngest formation in the Eureka Sound Group. Its deposits record inversion and dismembering of Sverdrup Basin by thrust-dominated tectonics during the Middle Eocene.  Deposition took place in several foredeeps, that also were involved in the deformation.

New Zealand Paleogene-Neogene basins

Waitemata Basin, Auckland, NZ

The Lower Miocene Waitemata Basin extends from greater Auckland into Northland, New Zealand. The fill is dominated by turbidites deposited at bathyal water depths. The basin mainly overlies Mesozoic greywacke.  In what is a remarkable contrast in water depth, the basal few metres consists of conglomerate, fossiliferous sandstone and limestone that were deposited in shallow shelf and pocket beach settings.  The pre-Miocene surface has considerable paleotopographic relief. Along the Early Miocene coastline this was manifested as greywacke islands, sea cliffs and sea stacks.

The cartoon below shows a rough reconstruction of the Early Miocene environment (drawn more than 30 years ago). Panels a and b show shoreline, beach, subtidal facies, complete with cliff rock-falls and landslides. Panel c depicts the early stages of draping and blanketing by bathyal turbidites and debris flows.

Brian Ricketts, Peter Ballance, Bruce Hayward, and Wolfgang Meyer, 1989. Basal Waitemata Group lithofacies: rapid subsidence in an Early Miocene interarc basin, New Zealand. Sedimentology v. 36(4): 559 – 580

Kariotahi, Pleistocene dune-barrier bar complex

The west coast of North Island was ‘straightened‘ during the Pleistocene-Holocene by several very large barrier island-bar systems behind which are the North’s harbours and estuaries. The barrier deposits are all siliciclastic shallow marine and subaerial dune sands. The modern harbours are accessed by narrow tidal channels that also feed ebb and flood tidal deltas.

The coastal exposure at Kariotahi beach, west of Auckland city, contains a nice example of an ancient valley cut into older dune sands, that was subsequently filled with a new generation of dune sands and stream deposits, only to be exhumed much later in the Pleistocene. The unconformity between the original valley margin and the infilling dunes is shown below. The unconformity also shows signs of paleosols and weathering associated with fluctuating watertables.

Leave a Comment

Your email address will not be published. Required fields are marked *

Archives
Categories
dip and strike compass
Measuring dip and strike
sandstone classification header
Classification of sandstones
Calcite cemented subarkose, Proterozoic Altyn Fm. southern Alberta
Sandstones in thin section
poles to bedding great circles
Stereographic projection – poles to planes
froude-reynolds-antidunes-header-768x439-1
Fluid flow: Froude and Reynolds numbers
Stokes Law for particle settling in a schematic context of other fluid flow functions
Fluid flow: Stokes Law and particle settling
sedimentary-basins-distribution-1-768x711
Classification of sedimentary basins
Model are representational descriptions are written in different languages - diagrammatic, descriptive, mathematical, and conceptual. They commonly contain variables and dimensionless quantities that permit quantitative analysis of the physical systems the models represent.
Geological models
Recent Posts
unconformity Lochranza atlas
Atlas of Unconformities
burren black head 2
The Burrens, County Clare, Ireland
Mary_Emilie_Holmes_ca_1893
Mary Emilie Holmes, 1850 – 1906
Cam Potikohua lst thin section
Atlas of cool-water carbonates
beach pebbles
Atlas of sedimentary textures and fabrics
Typical Soil profile
Atlas of soils and weathering
Palancar cowfish
Atlas of modern coral reefs
Death Valley from Dante's View, looking east towards the Panamint Range (a block-faulted and uplifted metamorphic core complex). Salt flats in mid-view (mostly halite, some gypsum and borax), and a nice succession of (arid) alluvial fans that interfinger with the saline facies.  This is one of the classic Basin and Range couplings between fault blocks and intervening basin.
Atlas of alluvial fans
Close up of Jurassic Navajo Sandstone dune crossbeds with tangential toe-sets, Zion National Park, Utah. Image height is about 2m. Large sand dune complexes in a continental desert, about 180 million years ago.
Atlas of aeolian deposits
Mary Austin Holley
Mary Austin Holley (1784–1846)
Scroll to Top